Vector tangent to a curve or surface at a given point
For a more general, but more technical, treatment of tangent vectors, see
Tangent space .
In mathematics , a tangent vector is a vector that is tangent to a curve or surface at a given point. Tangent vectors are described in the differential geometry of curves in the context of curves in R n . More generally, tangent vectors are elements of a tangent space of a differentiable manifold . Tangent vectors can also be described in terms of germs . Formally, a tangent vector at the point
x
{\displaystyle x}
is a linear derivation of the algebra defined by the set of germs at
x
{\displaystyle x}
.
Before proceeding to a general definition of the tangent vector, we discuss its use in calculus and its tensor properties.
Let
r
(
t
)
{\displaystyle \mathbf {r} (t)}
be a parametric smooth curve . The tangent vector is given by
r
′
(
t
)
{\displaystyle \mathbf {r} '(t)}
provided it exists and provided
r
′
(
t
)
≠
0
{\displaystyle \mathbf {r} '(t)\neq \mathbf {0} }
, where we have used a prime instead of the usual dot to indicate differentiation with respect to parameter t .[ 1] The unit tangent vector is given by
T
(
t
)
=
r
′
(
t
)
|
r
′
(
t
)
|
.
{\displaystyle \mathbf {T} (t)={\frac {\mathbf {r} '(t)}{|\mathbf {r} '(t)|}}\,.}
Given the curve
r
(
t
)
=
{
(
1
+
t
2
,
e
2
t
,
cos
t
)
∣
t
∈
R
}
{\displaystyle \mathbf {r} (t)=\left\{\left(1+t^{2},e^{2t},\cos {t}\right)\mid t\in \mathbb {R} \right\}}
in
R
3
{\displaystyle \mathbb {R} ^{3}}
, the unit tangent vector at
t
=
0
{\displaystyle t=0}
is given by
T
(
0
)
=
r
′
(
0
)
‖
r
′
(
0
)
‖
=
(
2
t
,
2
e
2
t
,
−
sin
t
)
4
t
2
+
4
e
4
t
+
sin
2
t
|
t
=
0
=
(
0
,
1
,
0
)
.
{\displaystyle \mathbf {T} (0)={\frac {\mathbf {r} '(0)}{\|\mathbf {r} '(0)\|}}=\left.{\frac {(2t,2e^{2t},-\sin {t})}{\sqrt {4t^{2}+4e^{4t}+\sin ^{2}{t}}}}\right|_{t=0}=(0,1,0)\,.}
If
r
(
t
)
{\displaystyle \mathbf {r} (t)}
is given parametrically in the n -dimensional coordinate system xi (here we have used superscripts as an index instead of the usual subscript) by
r
(
t
)
=
(
x
1
(
t
)
,
x
2
(
t
)
,
…
,
x
n
(
t
)
)
{\displaystyle \mathbf {r} (t)=(x^{1}(t),x^{2}(t),\ldots ,x^{n}(t))}
or
r
=
x
i
=
x
i
(
t
)
,
a
≤
t
≤
b
,
{\displaystyle \mathbf {r} =x^{i}=x^{i}(t),\quad a\leq t\leq b\,,}
then the tangent vector field
T
=
T
i
{\displaystyle \mathbf {T} =T^{i}}
is given by
T
i
=
d
x
i
d
t
.
{\displaystyle T^{i}={\frac {dx^{i}}{dt}}\,.}
Under a change of coordinates
u
i
=
u
i
(
x
1
,
x
2
,
…
,
x
n
)
,
1
≤
i
≤
n
{\displaystyle u^{i}=u^{i}(x^{1},x^{2},\ldots ,x^{n}),\quad 1\leq i\leq n}
the tangent vector
T
¯
=
T
¯
i
{\displaystyle {\bar {\mathbf {T} }}={\bar {T}}^{i}}
in the ui -coordinate system is given by
T
¯
i
=
d
u
i
d
t
=
∂
u
i
∂
x
s
d
x
s
d
t
=
T
s
∂
u
i
∂
x
s
{\displaystyle {\bar {T}}^{i}={\frac {du^{i}}{dt}}={\frac {\partial u^{i}}{\partial x^{s}}}{\frac {dx^{s}}{dt}}=T^{s}{\frac {\partial u^{i}}{\partial x^{s}}}}
where we have used the Einstein summation convention . Therefore, a tangent vector of a smooth curve will transform as a contravariant tensor of order one under a change of coordinates.[ 2]
Let
f
:
R
n
→
R
{\displaystyle f:\mathbb {R} ^{n}\to \mathbb {R} }
be a differentiable function and let
v
{\displaystyle \mathbf {v} }
be a vector in
R
n
{\displaystyle \mathbb {R} ^{n}}
. We define the directional derivative in the
v
{\displaystyle \mathbf {v} }
direction at a point
x
∈
R
n
{\displaystyle \mathbf {x} \in \mathbb {R} ^{n}}
by
∇
v
f
(
x
)
=
d
d
t
f
(
x
+
t
v
)
|
t
=
0
=
∑
i
=
1
n
v
i
∂
f
∂
x
i
(
x
)
.
{\displaystyle \nabla _{\mathbf {v} }f(\mathbf {x} )=\left.{\frac {d}{dt}}f(\mathbf {x} +t\mathbf {v} )\right|_{t=0}=\sum _{i=1}^{n}v_{i}{\frac {\partial f}{\partial x_{i}}}(\mathbf {x} )\,.}
The tangent vector at the point
x
{\displaystyle \mathbf {x} }
may then be defined[ 3] as
v
(
f
(
x
)
)
≡
(
∇
v
(
f
)
)
(
x
)
.
{\displaystyle \mathbf {v} (f(\mathbf {x} ))\equiv (\nabla _{\mathbf {v} }(f))(\mathbf {x} )\,.}
Let
f
,
g
:
R
n
→
R
{\displaystyle f,g:\mathbb {R} ^{n}\to \mathbb {R} }
be differentiable functions, let
v
,
w
{\displaystyle \mathbf {v} ,\mathbf {w} }
be tangent vectors in
R
n
{\displaystyle \mathbb {R} ^{n}}
at
x
∈
R
n
{\displaystyle \mathbf {x} \in \mathbb {R} ^{n}}
, and let
a
,
b
∈
R
{\displaystyle a,b\in \mathbb {R} }
. Then
(
a
v
+
b
w
)
(
f
)
=
a
v
(
f
)
+
b
w
(
f
)
{\displaystyle (a\mathbf {v} +b\mathbf {w} )(f)=a\mathbf {v} (f)+b\mathbf {w} (f)}
v
(
a
f
+
b
g
)
=
a
v
(
f
)
+
b
v
(
g
)
{\displaystyle \mathbf {v} (af+bg)=a\mathbf {v} (f)+b\mathbf {v} (g)}
v
(
f
g
)
=
f
(
x
)
v
(
g
)
+
g
(
x
)
v
(
f
)
.
{\displaystyle \mathbf {v} (fg)=f(\mathbf {x} )\mathbf {v} (g)+g(\mathbf {x} )\mathbf {v} (f)\,.}
Tangent vector on manifolds [ edit ]
Let
M
{\displaystyle M}
be a differentiable manifold and let
A
(
M
)
{\displaystyle A(M)}
be the algebra of real-valued differentiable functions on
M
{\displaystyle M}
. Then the tangent vector to
M
{\displaystyle M}
at a point
x
{\displaystyle x}
in the manifold is given by the derivation
D
v
:
A
(
M
)
→
R
{\displaystyle D_{v}:A(M)\rightarrow \mathbb {R} }
which shall be linear — i.e., for any
f
,
g
∈
A
(
M
)
{\displaystyle f,g\in A(M)}
and
a
,
b
∈
R
{\displaystyle a,b\in \mathbb {R} }
we have
D
v
(
a
f
+
b
g
)
=
a
D
v
(
f
)
+
b
D
v
(
g
)
.
{\displaystyle D_{v}(af+bg)=aD_{v}(f)+bD_{v}(g)\,.}
Note that the derivation will by definition have the Leibniz property
D
v
(
f
⋅
g
)
(
x
)
=
D
v
(
f
)
(
x
)
⋅
g
(
x
)
+
f
(
x
)
⋅
D
v
(
g
)
(
x
)
.
{\displaystyle D_{v}(f\cdot g)(x)=D_{v}(f)(x)\cdot g(x)+f(x)\cdot D_{v}(g)(x)\,.}
^ J. Stewart (2001)
^ D. Kay (1988)
^ A. Gray (1993)
Gray, Alfred (1993), Modern Differential Geometry of Curves and Surfaces , Boca Raton: CRC Press .
Stewart, James (2001), Calculus: Concepts and Contexts , Australia: Thomson/Brooks/Cole .
Kay, David (1988), Schaums Outline of Theory and Problems of Tensor Calculus , New York: McGraw-Hill .